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Nash Equilibrium

A Nash equilibrium of a strategic game is an action profile in which every
player’s action is optimal given every other player’s action.

Such a profile represents a steady state: every player’s behavior is the same
whenever she plays the game, and no player wishes to change her behavior.

More general notions of steady state allow the players’ choices to vary, as long
as the pattern of choices remains constant.

For example, each individual may, on each occasion she plays the game, choose
her action probabilistically according to the same, unchanging distribution.

In each play of the game the individual plays an action a with the same
probability p.

This leads us to the notion of a stochastic steady state.

Nash Equilibrium

A Nash equilibrium of a strategic game is an action profile in which every
player’s action is optimal given every other player’s action.

Such a profile represents a steady state: every player’s behavior is the same
whenever she plays the game, and no player wishes to change her behavior.

More general notions of steady state allow the players’ choices to vary, as long
as the pattern of choices remains constant.

For example, each individual may, on each occasion she plays the game, choose
her action probabilistically according to the same, unchanging distribution.

In each play of the game the individual plays an action a with the same
probability p.

This leads us to the notion of a stochastic steady state.
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Nash Equilibrium

This notion of a stochastic steady state can be modeled by a mixed strategy
Nash equilibrium, a generalization of the notion of Nash equilibrium.

So far, we have examined pure strategy Nash equilibrium in which the
equilibrium actions are chosen with probability 1.

Strictly speaking, a pure strategy is just a special case of a mixed
strategy, where the action is chosen with probability p = 1 (from all
possible 0 ≥ p ≥ 1).

von Neumann-Morgenstern Preferences

Once players begin randomizing – choosing actions probabilistically – we can’t
use ordinal preferences any longer.

If players don’t randomize, preferences can be defined over action profiles.

But if they do randomize, they need preferences over lotteries over action
profiles.

Preferences over lotteries over action profiles can be expressed as expected
utilities over the outcomes and are called von Neumann-Morgenstern (vNM)
preferences.

Strategic Games with vNM Preferences

A strategic form game with vNM preferences consists of

1 a set of players, N

2 for each player i, a set of actions, Ai

3 for each player i, vNM preferences

In a stochastic steady state of a strategic game, we allow each player to choose
a probability distribution over her set of actions rather than restricting her to
choose a deterministic action.

A mixed strategy of a player in a strategic game is a probability distribution
over the player’s actions.
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Some Notation

We need some notation:

α is a mixed-strategy profile.

αi(ai) is a probability assigned to action ai by αi.

αi is a mixed strategy for player i.

To specify a mixed strategy of player i we need to give the probability it assigns
to each of player i’s actions.

For example, the strategy of player 1 in a Matching Pennies game that
assigns probability 1

2
to each action is written as the strategy α1 for

α1(Head) =
1
2

and α1(Tail) =
1
2

.

A shorthand for this that is often used: player 1’s mixed strategy is(
1
2
, 1
2

)
.

Some Notation

Figure: Matching Pennies
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A mixed strategy profile in the Matching Pennies game would be

α = (α1;α2)

α = [(α1(Heads), α1(Tails)); ((α2(Heads), α2(Tails))]

Mixed Strategy Nash Equilibrium

A mixed strategy may assign probability 1 to a single action:

By allowing a player to choose probability distributions, we do not
prohibit her from choosing deterministic actions.

We refer to such a mixed strategy as a pure strategy.

Player i choosing the pure strategy that assigns probability 1 to the
action ai is equivalent to her simply choosing the action ai.

We can now define a mixed strategy Nash equilibrium.
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Mixed Strategy Nash Equilibrium

Mixed Strategy Nash Equilibrium

The mixed strategy profile α∗ in a strategic game with vNM preferences is a
mixed strategy Nash equilibrium if, for each player i and every mixed strategy
αi of player i, the expected payoff to player i of α∗ is at least as large as the
expected payoff to player i of (αi, α

∗
−i) according to a payoff function whose

expected value represents player i’s preferences over lotteries.

Equivalently, for each player i,

E[ui(α
∗)] ≥ E[ui(αi, α

∗
−i)] for every mixed strategy αi of player i

One way to find a mixed strategy Nash equilibrium is to use best response
functions.

Mixed Strategy Nash Equilibrium

Mixed Strategy Nash Equilibrium

The mixed strategy profile α∗ in a strategic game with vNM preferences is a
mixed strategy Nash equilibrium if, for each player i and every mixed strategy
αi of player i, the expected payoff to player i of α∗ is at least as large as the
expected payoff to player i of (αi, α

∗
−i) according to a payoff function whose

expected value represents player i’s preferences over lotteries.

Equivalently, for each player i,

E[ui(α
∗)] ≥ E[ui(αi, α

∗
−i)] for every mixed strategy αi of player i

One way to find a mixed strategy Nash equilibrium is to use best response
functions.

Best Response Functions

Denote player i’s best response function by Bi.

For a strategic game with ordinal preferences, Bi(a−i) is the set of player i’s
best actions when the list of the other players’ actions is a−i.

For a strategic game with vNM preferences, Bi(α−i) is the set of player i’s
best mixed strategies when the list of the other players’ mixed strategies is α−i.

A profile α∗ of mixed strategies is a mixed strategy Nash equilibrium if and
only if every player’s mixed strategy is a best response to the other players’
mixed strategies:

The mixed strategy profile α∗ is a mixed strategy Nash equilibrium if and
only if α∗i is in Bi(α

∗
−i) for every player i.
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Best Response Functions

In any two-player game in which each player has two actions like the Matching
Pennies game, the best response function of each player consists either of a
single pure strategy or of all mixed strategies. This has to do with the form of
the payoff functions.

Consider the following strategic form game.

Best Response Functions

1 Players: N = {1, 2}
2 Actions: A1 = {T, B}, A2 = {L, R}.
3 vNM preferences captured by a Bernoulli payoff function ui.

Player 1’s mixed strategy α1 assigns probability α1(T ) to her action T and
probability α1(B) to her action B.

For convenience, let p = α1(T ), so that α1(B) = 1− p.

Similarly, denote the probability α2(L) that player 2’s mixed strategy assigns to
L by q, so that α2(R) = 1− q.

Best Response Functions

The probability distribution generated by the mixed strategy pair (α1, α2) over
the four possible outcomes of the game is shown below:

Figure: Mixed Strategies
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The players’ choices are assumed to be independent.
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Best Response Functions

Figure: Mixed Strategies
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From this probability distribution, we can see that player 1’s expected utility to
the mixed strategy pair (α1; α2) is:

E[u1(α)] = pq · u1(T,L) + p(1− q) · u1(T,R)

+ (1− p)q · u1(B,L) + (1− p)(1− q) · u1(B,R)

= p[q · u1(T,L) + (1− q) · u1(T,R)]

+ (1− p)[q · u1(B,L) + (1− q) · u1(B,R)]

Best Response Functions

E[u1(α)] = p[q · u1(T,L) + (1− q) · u1(T,R)]

+ (1− p)[q · u1(B,L) + (1− q) · u1(B,R)]

The first term in square brackets is player 1’s expected utility when she
uses a pure strategy that assigns probability 1 to T and player 2 uses her
mixed strategy α2

The second term in square brackets is player 1’s expected utility when she
uses a pure strategy that assigns probability 1 to B and player 2 uses her
mixed strategy α2.

Best Response Functions

If we denote these two expected utilities as E1(T, α2) and E1(B,α2), then we
can write player 1’s expected utility to the mixed strategy pair (α1;α2) as

pE1(T, α2) + (1− p)E1(B,α2)

Player 1’s expected payoff is a weighted average of her expected payoffs to T
and B when player 2 uses the mixed strategy α2, with weights equal to the
probabilities assigned to T and B by α1.

We can see that player 1’s expected payoff, given player 2’s mixed strategy, is a
linear function of p.
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Best Response Functions

A significant implication of the linearity of player 1’s expected payoff is that
there are three possibilities for her best response to a given mixed strategy of
player 2.

Possibility 1: Player 1’s unique best response is the pure strategy T if
E1(T, α2) > E1(B,α2)

Figure: Mixed Strategies
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Best Response Functions

Possibility 2: Player 1’s unique best response is the pure strategy B if
E1(T, α2) < E1(B,α2).

Figure: Mixed Strategies
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Best Response Functions

Possibility 3: All mixed strategies of player 1 yield the same expected payoff,
and hence all best responses, if E1(T, α2) = E1(B,α2).

Figure: Mixed Strategies
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A mixed strategy (p, 1− p) for which 0 ≤ p ≤ 1 is never a unique best response;
either it is not a best response or all mixed strategies are best responses.
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Example: Battle of the Sexes

Consider the two-player game with vNM preferences in which the players’
preferences over deterministic action profiles are the same as in the Battle of
the Sexes and their preferences over lotteries are represented by the expected
value of the payoff functions shown in the figure below.

What are the mixed strategy Nash equilibria of this game?

Figure: Battle of the Sexes
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Example: Battle of the Sexes

We first construct player 1’s best response function. To get this, we must
calculate the expected utility of Boxing

E1(Boxing, α2) = 3 · q + 1 · (1− q)
= 3q + 1− q = 2q + 1

and the expected utility of Ballet

E1(Ballet, α2) = 0 · q + 2 · (1− q)
= 2− 2q

E1(Boxing, α2) > E1(Ballet, α2) if

2q + 1 > 2− 2q

4q > 1

q >
1

4

Example: Battle of the Sexes

If q > 1
4

i.e. E1(Boxing, α2) > E1(Ballet, α2), then player 1’s unique
best response is Boxing i.e. p = 1.

If q < 1
4

i.e. E1(Boxing, α2) < E1(Ballet, α2), then player 1’s unique
best response is Ballet i.e. p = 0.

If q = 1
4

i.e. E1(Boxing, α2) = E1(Ballet, α2), then all of player 1’s
mixed strategies yield the same utility and so are all best responses i.e.
0 ≤ p ≤ 1.

Thus, player 1’s best response function is:

B1(q) =


p = 0 if q < 1

4

p : 0 ≤ p ≤ 1 if q = 1
4

p = 1 if q > 1
4
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Example: Battle of the Sexes

We can repeat this for player 2’s best response function. The expected utility
of Boxing

E2(Boxing, α1) = 2 · p+ 0 · (1− p)
= 2p

and the expected utility of Ballet

E2(Ballet, α1) = 1 · p+ 3 · (1− p)
= p+ 3− 3p = 3− 2p

E2(Boxing, α1) > E2(Ballet, α1) if

2p > 3− 2p

4p > 3

p >
3

4

Example: Battle of the Sexes

If p > 3
4

i.e. E2(Boxing, α1) > E2(Ballet, α1), then player 2’s unique
best response is Boxing i.e. q = 1.

If p < 3
4

i.e. E2(Boxing, α1) < E2(Ballet, α1), then player 2’s unique
best response is Ballet i.e. q = 0.

If p = 3
4

i.e. E2(Boxing, α1) = E2(Ballet, α1), then all of player 2’s
mixed strategies yield the same utility and so are all best responses i.e.
0 ≤ q ≤ 1.

Thus, player 2’s best response function is:

B2(p) =


q = 0 if p < 3

4

q : 0 ≤ q ≤ 1 if p = 3
4

q = 1 if p > 3
4

Example: Battle of the Sexes

Figure: Battle of the Sexes
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There are three mixed strategy Nash equilibria

1 ((0, 1); (0, 1)) – degenerate mixed strategy where they each play pure
strategies (Ballet; Ballet).

2
((

3
4
, 1
4

)
;
(
1
4
, 3
4

))
– a proper mixed strategy.

3 ((1, 0); (1, 0)) – degenerate mixed strategy where they each play pure
strategies (Boxing; Boxing).
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Example: Matching Pennies

Consider the two-player game with vNM preferences in which the players’
preferences over deterministic action profiles are the same as in the Matching
Pennies game and their preferences over lotteries are represented by the
expected value of the payoff functions shown in the figure below.

What are the mixed strategy Nash equilibria of this game?

Figure: Matching Pennies
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Example: Matching Pennies

We first construct player 1’s best response function. To get this, we must
calculate the expected utility of Heads

E1(Heads, α2) = 1 · q + (1− q) · (−1)
= 2q − 1

and the expected utility of Tails

E1(Tails, α2) = (−1) · q + 1 · (1− q)
= 1− 2q

E1(Heads, α2) > E1(Tails, α2) if

2q − 1 > 1− 2q

4q > 2

q >
1

2

Example: Matching Pennies

If q > 1
2

i.e. E1(Heads, α2) > E1(Tails, α2), then player 1’s unique best
response is Heads i.e. p = 1.

If q < 1
2

i.e. E1(Heads, α2) < E1(Tails, α2), then player 1’s unique best
response is Tails i.e. p = 0.

If q = 1
2

i.e. E1(Heads, α2) = E1(Tails, α2), then all of player 1’s mixed
strategies yield the same utility and so are all best responses i.e.
0 ≤ p ≤ 1.

Thus, player 1’s best response function is:

B1(q) =


p = 0 if q < 1

2

p : 0 ≤ p ≤ 1 if q = 1
2

p = 1 if q > 1
2

Notes

Notes

Notes



Example: Matching Pennies

We can repeat this for player 2’s best response function. The expected utility
of Heads

E2(Heads, α1) = (−1) · p+ 1 · (1− p)
= 1− 2p

and the expected utility of Tails

E2(Tails, α1) = 1 · p+ (−1) · (1− p)
= 2p− 1

E2(Heads, α1) > E2(Tails, α2) if

1− 2p > 2p− 1

2 > 4p

p <
1

2

Example: Matching Pennies

If p > 1
2

i.e. E2(Heads, α2) < E2(Tails, α2), then player 2’s unique best
response is Tails i.e. q = 0.

If p < 1
2

i.e. E2(Heads, α2) > E2(Tails, α2), then player 2’s unique best
response is Heads i.e. q = 1.

If p = 1
2

i.e. E2(Heads, α2) = E2(Tails, α2), then all of player 2’s mixed
strategies yield the same utility and so are all best responses i.e.
0 ≤ q ≤ 1.

Thus, player 2’s best response function is:

B2(p) =


q = 0 if p > 1

2

q : 0 ≤ q ≤ 1 if p = 1
2

q = 1 if p < 1
2

Example: Matching Pennies

Figure: Battle of the Sexes
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There is only one mixed strategy Nash equilibria

1
((

1
2
, 1
2

)
;
(
1
2
, 1
2

))
– a proper mixed strategy.

We can see that Matching Pennies has no equilibrium if the players are not
allowed to randomize.
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Example: Hawk-Dove Game

Consider the two-player game with vNM preferences in which the players’
preferences over deterministic action profiles are the same as in the Hawk-Dove
game and their preferences over lotteries are represented by the expected value
of the payoff functions shown in the figure below.

What are the mixed strategy Nash equilibria of this game?

Figure: Hawk-Dove Game
 

 

                        Animal 2 

    

   q 1-q 

     Aggressive       Passive 

Animal 1 

 

p 

 

Aggressive 

 

0, 0 

 

 

6, 1 

 

 

1-p 

 

Passive 

 

1, 6 

 

 

3, 3 

 

 

 

Example: Hawk-Dove Game

We first construct player 1’s best response function. To get this, we must
calculate the expected utility of Aggressive

E1(Aggressive, α2) = 0 · q + (1− q) · 6
= 6− 6q

and the expected utility of Passive

E1(Passive, α2) = 1 · q + 3 · (1− q)
= 3− 2q

E1(Aggressive, α2) > E1(Passive, α2) if

6− 6q > 3− 2q

3 > 4q

q <
3

4

Example: Hawk-Dove Game

If q > 3
4

i.e. E1(Aggressive, α2) < E1(Passive, α2), then player 1’s
unique best response is Passive i.e. p = 0.

If q < 3
4

i.e. E1(Aggressive, α2) > E1(Passive, α2), then player 1’s
unique best response is Aggressive i.e. p = 1.

If q = 3
4

i.e. E1(Aggressive, α2) = E1(Passive, α2), then all of player
1’s mixed strategies yield the same utility and so are all best responses
i.e. 0 ≤ p ≤ 1.

Thus, player 1’s best response function is:

B1(q) =


p = 0 if q > 3

4

p : 0 ≤ p ≤ 1 if q = 3
4

p = 1 if q < 3
4

Notes
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Example: Hawk-Dove Game

We can repeat this for player 2’s best response function. The expected utility
of Aggressive

E2(Aggressive, α1) = 0 · p+ 6 · (1− p)
= 6− 6p

and the expected utility of Passive

E2(Passive, α1) = 1 · p+ 3 · (1− p)
= 3− 2p

E2(Aggressive, α1) > E2(Passive, α2) if

6− 6p > 3− 2p

3 > 4p

p <
3

4

Example: Hawk-Dove Game

If p > 3
4

i.e. E2(Aggressive, α2) < E2(Passive, α2), then player 2’s
unique best response is Passive i.e. q = 0.

If p < 3
4

i.e. E2(Aggressive, α2) > E2(Passive, α2), then player 2’s
unique best response is Aggressive i.e. q = 1.

If p = 3
4

i.e. E2(Aggressive, α2) = E2(Passive, α2), then all of player
2’s mixed strategies yield the same utility and so are all best responses
i.e. 0 ≤ q ≤ 1.

Thus, player 2’s best response function is:

B2(p) =


q = 0 if p > 3

4

q : 0 ≤ q ≤ 1 if p = 3
4

q = 1 if p < 3
4

Example: Hawk-Dove Game

Figure: Hawk-Dove Game
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There are three mixed strategy Nash equilibria

1 ((0, 1); (1, 0)) – degenerate mixed strategy where they each play pure
strategies (Passive; Aggressive).

2
((

3
4
, 1
4

)
;
(
3
4
, 1
4

))
– a proper mixed strategy.

3 ((1, 0); (0, 1)) – degenerate mixed strategy where they each play pure
strategies (Aggressive; Passive).
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Example: Football Game

The setup of the Football Game is

Players: N = {OC,DC}, where OC is offensive coordinator and DC is
defensive coordinator.

Actions: OC = {pass, run}, DC = {pass defense, run defense}.
The set of action profiles are a = {(pass; pass defense) = stop,
(pass; run defense) = touchdown, (run; pass defense) = first down,
(run; run defense) = stop}.

Preferences

OC: (pass; run defense) > (run; pass defense) > (pass; pass
defense) = (run; run defense)
DC: (pass; pass defense) = (run; run defense) > (run; pass defense)
> (pass; run defense)

Example: Football Game

Figure: Football Game
 

 

                        DC 

    

   q 1-q 

   Pass Defense  Run Defense 

OC 

 

p 

 

Pass 
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Run 

 

F, -F 
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There are no Nash equilibria in pure strategies and so we need to look for
mixed strategy NE.

1 Find all Nash equilibria.

2 What happens when the value of the touchdown increases?

Example: Football Game

We first construct the OC’s best response function. To get this, we must
calculate the expected utility of Pass

EOC(Pass, α2) = 0 · q + (1− q) · T
= T − Tq

and the expected utility of Run

EOC(Passive, α2) = F · q + 0 · (1− q)
= qF

EOC(Pass, α2) > EOC(Run, α2) if

T − Tq > qF

T > qF + qT

T > q(F + T )

T

T + F
> q

Notes
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Example: Football Game

If q > T
T+F

i.e. EOC(Pass, αDC) < EOC(Run, αDC), then player 1’s
unique best response is Run i.e. p = 0.

If q < T
T+F

i.e. EOC(Pass, αDC) > EOC(Run, αDC), then player 1’s
unique best response is Pass i.e. p = 1.

If q = T
T+F

i.e. EOC(Pass, αDC) = EOC(Run, αDC), then all of player
1’s mixed strategies yield the same utility and so are all best responses
i.e. 0 ≤ p ≤ 1.

Thus, the OC’s best response function is:

BOC(q) =


p = 0 if q > T

T+F

p : 0 ≤ p ≤ 1 if q = T
T+F

p = 1 if q < T
T+F

Example: Football Game

We can repeat this for the DC’s best response function. The expected utility of
Pass Defense

EDC(Pass Defense, α1) = S · p+ (−F ) · (1− p)
= pS + pF − F

and the expected utility of Run Defense

EDC(Run Defense, α1) = (−T ) · p+ S · (1− p)
= S − pT − pS

EDC(Pass Defense, α1) > E2(Run Defense, α2) if

pS + pF − F > S − pT − pS
p(S + F ) + p(T + S) > S + F

p(2S + F + T ) > S + F

p >
S + F

2S + F + T

Example: Football Game

If p > S+F
2S+F+T

i.e. EDC(Aggressive, αOC) < E2(Passive, αOC), then
player 2’s unique best response is Pass Defense i.e. q = 1.

If p < S+F
2S+F+T

i.e. EDC(Aggressive, αOC) > E2(Passive, αOC), then
player 2’s unique best response is Run Defense i.e. q = 0.

If p = S+F
2S+F+T

i.e. EDC(Aggressive, αOC) = E2(Passive, αOC), then
all of player 2’s mixed strategies yield the same utility and so are all best
responses i.e. 0 ≤ q ≤ 1.

Thus, the DC’s best response function is:

BDC(p) =


q = 0 if p < S+F

2S+F+T

q : 0 ≤ q ≤ 1 if p = S+F
2S+F+T

q = 1 if p > S+F
2S+F+T

Notes

Notes

Notes



Example: Football Game

Figure: Football Game
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There is one mixed strategy Nash equilibrium

1

((
S+F

2S+F+T
, 1− S+F

2S+F+T

)
;
(

T
T+F

, 1− T
T+F

))

Example: Football Game

The model/equilibrium analysis is your theory.

You get testable implications from the comparative statics.

Comparative statics indicate how the equilibrium changes as you change one
of the model’s parameters.

So, let’s look at what happens when the value of a touchdown (T ) increases.

What happens if T → T ′ : T ′ > T?

Example: Football Game

Figure: Football Game
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(F+S)/(2S+F+T) (F+S)/(2S+F+T’) 

As the value of T increases, the probability of passing (p) decreases but the
probability of pass defense (q) increases!

Empirically, as the end of the game approaches, the value of a touchdown
increases. What we see is a lot of running plays by the offense and the defense
pulls back because it doesn’t want to allow touchdowns.
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An Alternative to Best Response Functions

So far we have found the set of mixed strategy NE by constructing the players’
best response functions. But there is another way.

You will have noticed in all the previous games that the proper mixed strategy
NE occurs when the expected payoffs to each of a player’s pure strategies are
equal.

Thus, one way to find the proper mixed strategy NE is to set the expected
payoffs of the player’s strategies equal to each other and solve for the
respective probabilities.

An Alternative to Best Response Functions

Definition: A mixed strategy profile a∗ in a strategic game with vNM
preferences in which each player has finitely many actions is a mixed strategy
Nash equilibrium if and only if, for each player i

the expected payoff, given a∗−i, to every action to which a∗i assigns
positive probability is the same

the expected payoff, given a∗−i, to every action to which a∗i assigns zero
probability is at most the expected payoff to any action to which a∗i
assigns positive probability.

Each player’s expected payoff in an equilibrium is her expected payoff to any of
her actions that she uses with positive probability.

An Alternative to Best Response Functions

Consider the Battle of the Sexes game again.

Figure: Battle of the Sexes
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   Boxing Ballet  
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Boxing 

 

3, 2 
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Ballet 
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An Alternative to Best Response Functions

When constructing the best response functions for each player, we found the
following:

If q = 1
4

i.e. E1(Boxing, α2) = E1(Ballet, α2), then all of player 1’s
mixed strategies yield the same utility and so are all best responses i.e.
0 ≤ p ≤ 1.

If p = 3
4

i.e. E2(Boxing, α1) = E2(Ballet, α1), then all of player 2’s
mixed strategies yield the same utility and so are all best responses i.e.
0 ≤ q ≤ 1.

Figure: Battle of the Sexes
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1 
0 

q 

p 

Best Response Functions and Indifference

The key then to finding the proper mixed strategy NE is simply to set the
expected payoffs to each of a player’s pure strategies equal to each other and
solve for either p or q.

In effect, each player must choose either p or q to make the other player
indifferent between her two actions.

Figure: Battle of the Sexes
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Battle of the Sexes Again

The expected utility of Boxing for Player 1 is

E1(Boxing, α2) = 3 · q + 1 · (1− q)
= 3q + 1− q = 2q + 1

and the expected utility of Ballet

E1(Ballet, α2) = 0 · q + 2 · (1− q)
= 2− 2q

Notes
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Battle of the Sexes Again

Player 2 needs to choose a q such that Player 1 is indifferent between Boxing
and Ballet.

E1(Boxing, α2) = E1(Ballet, α2) if

2q + 1 = 2− 2q

4q = 1

q =
1

4

So, in the proper mixed strategy NE, player 2 uses the mixed strategy
(q, 1− q) =

(
1
4
, 3
4

)
.

Battle of the Sexes Again

The expected utility of Boxing for Player 2 is

E2(Boxing, α1) = 2 · p+ 0 · (1− p)
= 2p

and the expected utility of Ballet

E2(Ballet, α1) = 1 · p+ 3 · (1− p)
= p+ 3− 3p = 3− 2p

Battle of the Sexes Again

Player 1 needs to choose a p such that Player 2 is indifferent between Boxing
and Ballet.

E2(Boxing, α1) = E2(Ballet, α1) if

2p = 3− 2p

4p = 3

p =
3

4

So, in the proper mixed strategy NE, player 1 uses the mixed strategy
(p, 1− p) =

(
3
4
, 1
4

)
.

And so the proper mixed strategy NE of the Battle of the Sexes game is((
3
4
, 1
4

)
;
(
1
4
, 3
4

))
.
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Battle of the Sexes Again

Player 1 needs to choose a p such that Player 2 is indifferent between Boxing
and Ballet.

E2(Boxing, α1) = E2(Ballet, α1) if

2p = 3− 2p

4p = 3

p =
3

4

So, in the proper mixed strategy NE, player 1 uses the mixed strategy
(p, 1− p) =

(
3
4
, 1
4

)
.

And so the proper mixed strategy NE of the Battle of the Sexes game is((
3
4
, 1
4

)
;
(
1
4
, 3
4

))
.

Matching Pennies Again

Figure: Matching Pennies
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Heads 

 

1, -1 
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Tails 
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The expected utility of Heads for Player 1 is

E1(Heads, α2) = 1 · q + (1− q) · (−1)
= 2q − 1

and the expected utility of Tails is

E1(Tails, α2) = (−1) · q + 1 · (1− q)
= 1− 2q

Matching Pennies Again

Player 2 needs to choose a q such that Player 1 is indifferent between Heads
and Tails.

E1(Heads, α2) = E1(Tails, α2) if

2q − 1 = 1− 2q

4q = 2

q =
1

2

So, in the proper mixed strategy NE, player 2 uses the mixed strategy
(q, 1− q) =

(
1
2
, 1
2

)
.

Notes
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Matching Pennies Again

Figure: Matching Pennies
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1, -1 
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-1, 1 
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The expected utility of Heads for Player 2 is

E2(Heads, α1) = (−1) · p+ 1 · (1− p)
= 1− 2p

and the expected utility of Tails is

E2(Tails, α1) = 1 · p+ (−1) · (1− p)
= 2p− 1

Matching Pennies Again

Player 1 needs to choose a p such that Player 2 is indifferent between Heads
and Tails.

E2(Heads, α1) = E2(Tails, α2) if

1− 2p = 2p− 1

2 = 4p

p =
1

2

So, in the proper mixed strategy NE, player 1 uses the mixed strategy
(p, 1− p) =

(
1
2
, 1
2

)
.

And so the proper mixed strategy NE of the Matching Pennies game is((
1
2
, 1
2

)
;
(
1
2
, 1
2

))
.

Matching Pennies Again

Player 1 needs to choose a p such that Player 2 is indifferent between Heads
and Tails.

E2(Heads, α1) = E2(Tails, α2) if

1− 2p = 2p− 1

2 = 4p

p =
1

2

So, in the proper mixed strategy NE, player 1 uses the mixed strategy
(p, 1− p) =

(
1
2
, 1
2

)
.

And so the proper mixed strategy NE of the Matching Pennies game is((
1
2
, 1
2

)
;
(
1
2
, 1
2

))
.

Notes

Notes

Notes



Hawk-Dove Game Again

Figure: Hawk-Dove Game
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     Aggressive       Passive 

Animal 1 
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Aggressive 

 

0, 0 

 

 

6, 1 

 

 

1-p 

 

Passive 

 

1, 6 

 

 

3, 3 

 

 

 

The expected utility of Aggressive for Player 1 is

E1(Aggressive, α2) = 0 · q + (1− q) · 6
= 6− 6q

and the expected utility of Passive is

E1(Passive, α2) = 1 · q + 3 · (1− q)
= 3− 2q

Hawk-Dove Game Again

Player 2 needs to choose a q such that Player 1 is indifferent between
Aggressive and Passive.

E1(Aggressive, α2) = E1(Passive, α2) if

6− 6q = 3− 2q

3 = 4q

q =
3

4

So, in the proper mixed strategy NE, player 2 uses the mixed strategy
(q, 1− q) =

(
3
4
, 1
4

)
.

Hawk-Dove Game Again

Figure: Hawk-Dove Game
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   q 1-q 

     Aggressive       Passive 

Animal 1 

 

p 

 

Aggressive 

 

0, 0 

 

 

6, 1 

 

 

1-p 

 

Passive 

 

1, 6 

 

 

3, 3 

 

 

 

The expected utility of Aggressive for Player 2 is

E2(Aggressive, α1) = 0 · p+ 6 · (1− p)
= 6− 6p

and the expected utility of Passive is

E2(Passive, α1) = 1 · p+ 3 · (1− p)
= 3− 2p
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Hawk-Dove Game Again

Player 1 needs to choose a p such that Player 2 is indifferent between
Aggressive and Passive.

E2(Aggressive, α1) = E2(Passive, α2) if

6− 6p = 3− 2p

3 = 4p

p =
3

4

So, in the proper mixed strategy NE, player 1 uses the mixed strategy
(p, 1− p) =

(
3
4
, 1
4

)
.

And so the proper mixed strategy NE of the Matching Pennies game is((
3
4
, 1
4

)
;
(
3
4
, 1
4

))
.

Hawk-Dove Game Again

Player 1 needs to choose a p such that Player 2 is indifferent between
Aggressive and Passive.

E2(Aggressive, α1) = E2(Passive, α2) if

6− 6p = 3− 2p

3 = 4p

p =
3

4

So, in the proper mixed strategy NE, player 1 uses the mixed strategy
(p, 1− p) =

(
3
4
, 1
4

)
.

And so the proper mixed strategy NE of the Matching Pennies game is((
3
4
, 1
4

)
;
(
3
4
, 1
4

))
.

Soccer Penalty Game

We can easily extend this strategy to games in which players have any number
of finite actions.

Consider a soccer penalty where the shooter must overcome the opponent
team’s goalkeeper. The shooter may target the left side (L), the center (C), or
the right side (R) of the goal.

If the goalkeeper moves to the target of the penalty shooter, she (or her team)
gets a payoff of 1 and the shooter (or her team) gets zero.

If the goalkeeper does not move to the shooter’s target, she gets zero and the
shooter gets a payoff of 1.

Find the unique Nash equilibrium of the game. What are the expected
equilibrium payoffs of the penalty shooter, i.e., what proportion of her shots
will yield a goal?

Notes

Notes

Notes



Soccer Penalty Game

Figure: Soccer Penalty Game
 

 

 

 

 

Shooter  

 
Goalkeeper 

L C R 

L 0, 1 1, 0 1, 0 

C 1, 0 0, 1 1, 0 

R 1, 0 1, 0 0, 1 

 

 

 

There are no NE in pure strategies. But what about a proper mixed strategy
NE?

Soccer Penalty Game

Figure: Soccer Penalty Game 
 

 
 
 

Shooter  

 

 

Goalkeeper 
 qL 

 
L 

qC 
 

C 

qR 
 

R 
 

pL L 0, 1 1, 0 1, 0 

 
pC C 1, 0 0, 1 1, 0 

 
pR R 1, 0 1, 0 0, 1 

 
 
 

We know that pL + pC + pR = 1 and qL + qC + qR = 1.

Soccer Penalty Game

To derive the equilibrium, we must derive the expected payoffs for each player
for each of the three actions and set them equal.

Figure: Soccer Penalty Game
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pL L 0, 1 1, 0 1, 0 

 
pC C 1, 0 0, 1 1, 0 

 
pR R 1, 0 1, 0 0, 1 

 
 
 

ES [L, q] = qC + qR

ES [C, q] = qL + qR

ES [R, q] = qL + qC

Using ES [L, q] = ES [C, q] = ES [R, q] and qL + qC + qR = 1, it is easy to see
that qL = qC = qR = 1

3
.
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Soccer Penalty Game

Figure: Soccer Penalty Game
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qR 
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pL L 0, 1 1, 0 1, 0 

 
pC C 1, 0 0, 1 1, 0 

 
pR R 1, 0 1, 0 0, 1 

 
 
 

Similarly for the goalkeeper, it is easy to see that

EG[L, p] = pL

EG[C, p] = pC

EG[R, p] = pR

Using EG[L, p] = EG[C, p] = EG[R, p] and pL + pC + pR = 1, it is easy to see
that pL = pC = pR = 1

3
.

Soccer Penalty Game

Thus, the unique NE of the Soccer Penalty Game is
((

1
3
, 1
3
, 1
3

)
;
(
1
3
, 1
3
, 1
3

))
.

Given these probabilities, the shooter will make a goal on average in 2 out 3
penalties for any of her three actions (i.e., ES [L, q] = qC + qR = 1

3
+ 1

3
= 2

3

and similarly ES [C, q] =
2
3

and ES [R, q] =
2
3

. Hence, in equilibrium the
shooter will make a goal in 2 out of 3 penalties (i.e., the proportion is 2

3
).
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