Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nash Equilibrium

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Nash Equilibrium

Notes

\qquad
\qquad
\qquad
\qquad
For example, each individual may, on each occasion she plays the game, choose her action probabilistically according to the same, unchanging distribution.

- In each play of the game the individual plays an action a with the same probability p.

This leads us to the notion of a stochastic steady state.

Notes

This notion of a stochastic steady state can be modeled by a mixed strategy Nash equilibrium, a generalization of the notion of Nash equilibrium.

- So far, we have examined pure strategy Nash equilibrium in which the equilibrium actions are chosen with probability 1.
- Strictly speaking, a pure strategy is just a special case of a mixed strategy, where the action is chosen with probability $p=1$ (from all possible $0 \geq p \geq 1$)

von Neumann-Morgenstern Preferences

Once players begin randomizing - choosing actions probabilistically - we can't use ordinal preferences any longer.

If players don't randomize, preferences can be defined over action profiles.

But if they do randomize, they need preferences over lotteries over action profiles.

Preferences over lotteries over action profiles can be expressed as expected utilities over the outcomes and are called von Neumann-Morgenstern (vNM) preferences.

Strategic Games with vNM Preferences

A strategic form game with vNM preferences consists of
(1) a set of players, N
(2) for each player i, a set of actions, A_{i}
(3) for each player i, vNM preferences
In a stochastic steady state of a strategic game, we allow each player to choose
a probability distribution over her set of actions rather than restricting her to
choose a deterministic action.
A mixed strategy of a player in a strategic game is a probability distribution
over the player's actions.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Some Notation

We need some notation:

- α is a mixed-strategy profile.
- $\alpha_{i}\left(a_{i}\right)$ is a probability assigned to action a_{i} by α_{i}.
- α_{i} is a mixed strategy for player i.

To specify a mixed strategy of player i we need to give the probability it assigns to each of player i 's actions.

- For example, the strategy of player 1 in a Matching Pennies game that assigns probability $\frac{1}{2}$ to each action is written as the strategy α_{1} for $\alpha_{1}($ Head $)=\frac{1}{2}$ and $\alpha_{1}($ Tail $)=\frac{1}{2}$.
- A shorthand for this that is often used: player 1's mixed strategy is $\left(\frac{1}{2}, \frac{1}{2}\right)$.

Some Notation

Notes

Figure: Matching Pennies

A mixed strategy profile in the Matching Pennies game would be

$$
\begin{aligned}
& \alpha=\left(\alpha_{1} ; \alpha_{2}\right) \\
& \alpha=\left[\left(\alpha_{1}(\text { Heads }), \alpha_{1}(\text { Tails })\right) ;\left(\left(\alpha_{2}(\text { Heads }), \alpha_{2}(\text { Tails })\right)\right]\right.
\end{aligned}
$$

Mixed Strategy Nash Equilibrium

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mixed Strategy Nash Equilibrium

Mixed Strategy Nash Equilibrium

The mixed strategy profile α^{*} in a strategic game with vNM preferences is a mixed strategy Nash equilibrium if, for each player i and every mixed strategy α_{i} of player i, the expected payoff to player i of α^{*} is at least as large as the expected payoff to player i of $\left(\alpha_{i}, \alpha_{-i}^{*}\right)$ according to a payoff function whose expected value represents player i 's preferences over lotteries.

Equivalently, for each player i,
$E\left[u_{i}\left(\alpha^{*}\right)\right] \geq E\left[u_{i}\left(\alpha_{i}, \alpha_{-i}^{*}\right)\right]$ for every mixed strategy α_{i} of player i

Mixed Strategy Nash Equilibrium

Mixed Strategy Nash Equilibrium

The mixed strategy profile α^{*} in a strategic game with vNM preferences is a mixed strategy Nash equilibrium if, for each player i and every mixed strategy α_{i} of player i, the expected payoff to player i of α^{*} is at least as large as the expected payoff to player i of $\left(\alpha_{i}, \alpha_{-i}^{*}\right)$ according to a payoff function whose expected value represents player i 's preferences over lotteries.

Equivalently, for each player i,
$E\left[u_{i}\left(\alpha^{*}\right)\right] \geq E\left[u_{i}\left(\alpha_{i}, \alpha_{-i}^{*}\right)\right]$ for every mixed strategy α_{i} of player i

One way to find a mixed strategy Nash equilibrium is to use best response functions.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Denote player i 's best response function by B_{i}.

For a strategic game with ordinal preferences, $B_{i}\left(a_{-i}\right)$ is the set of player i 's best actions when the list of the other players' actions is a_{-i}.

For a strategic game with vNM preferences, $B_{i}\left(\alpha_{-i}\right)$ is the set of player i 's best mixed strategies when the list of the other players' mixed strategies is α_{-i}

A profile α^{*} of mixed strategies is a mixed strategy Nash equilibrium if and only if every player's mixed strategy is a best response to the other players' mixed strategies:

- The mixed strategy profile α^{*} is a mixed strategy Nash equilibrium if and only if α_{i}^{*} is in $B_{i}\left(\alpha_{-i}^{*}\right)$ for every player i.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Best Response Functions

In any two-player game in which each player has two actions like the Matching Pennies game, the best response function of each player consists either of a single pure strategy or of all mixed strategies. This has to do with the form of the payoff functions.

Consider the following strategic form game

Best Response Functions

(1) Players: $N=\{1,2\}$
(2) Actions: $A_{1}=\{\mathrm{T}, \mathrm{B}\}, A_{2}=\{\mathrm{L}, \mathrm{R}\}$
(3) vNM preferences captured by a Bernoulli payoff function u_{i}.

Player 1's mixed strategy α_{1} assigns probability $\alpha_{1}(T)$ to her action T and probability $\alpha_{1}(B)$ to her action B.

For convenience, let $p=\alpha_{1}(T)$, so that $\alpha_{1}(B)=1-p$.
Similarly, denote the probability $\alpha_{2}(L)$ that player 2's mixed strategy assigns to
L by q, so that $\alpha_{2}(R)=1-q$.

Best Response Functions

The probability distribution generated by the mixed strategy pair (α_{1}, α_{2}) over the four possible outcomes of the game is shown below:

	Figure: Mixed Strategies			
Player 1			Player 2	
			q	1-q
			L	R
	p	T	pq	p(1-q)
	1-p	B	(1-p) q	(1-p)(1-q)

[^0]
Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Best Response Functions

Figure: Mixed Strategies

From this probability distribution, we can see that player 1's expected utility to the mixed strategy pair $\left(\alpha_{1} ; \alpha_{2}\right)$ is:

$$
\begin{aligned}
E\left[u_{1}(\alpha)\right] & =p q \cdot u_{1}(T, L)+p(1-q) \cdot u_{1}(T, R) \\
& +(1-p) q \cdot u_{1}(B, L)+(1-p)(1-q) \cdot u_{1}(B, R) \\
& =p\left[q \cdot u_{1}(T, L)+(1-q) \cdot u_{1}(T, R)\right] \\
& +(1-p)\left[q \cdot u_{1}(B, L)+(1-q) \cdot u_{1}(B, R)\right]
\end{aligned}
$$

Best Response Functions

$$
\begin{aligned}
E\left[u_{1}(\alpha)\right] & =p\left[q \cdot u_{1}(T, L)+(1-q) \cdot u_{1}(T, R)\right] \\
& +(1-p)\left[q \cdot u_{1}(B, L)+(1-q) \cdot u_{1}(B, R)\right]
\end{aligned}
$$

- The first term in square brackets is player 1's expected utility when she uses a pure strategy that assigns probability 1 to T and player 2 uses her mixed strategy α_{2}
- The second term in square brackets is player 1's expected utility when she uses a pure strategy that assigns probability 1 to B and player 2 uses her mixed strategy α_{2}.

Best Response Functions

Notes

\qquad
\qquad
\qquad
\qquad and B when player 2 uses the mixed strategy α_{2}, with weights equal to the probabilities assigned to T and B by α_{1}.

We can see that player 1's expected payoff, given player 2's mixed strategy, is a linear function of p.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

If we denote these two expected utilities as $E_{1}\left(T, \alpha_{2}\right)$ and $E_{1}\left(B, \alpha_{2}\right)$, then we can write player 1's expected utility to the mixed strategy pair $\left(\alpha_{1} ; \alpha_{2}\right)$ as

$$
p E_{1}\left(T, \alpha_{2}\right)+(1-p) E_{1}\left(B, \alpha_{2}\right)
$$

Player 1's expected payoff is a weighted average of her expected payoffs to T

Best Response Functions

A significant implication of the linearity of player 1's expected payoff is that there are three possibilities for her best response to a given mixed strategy of player 2.

Possibility 1: Player 1's unique best response is the pure strategy T if $E_{1}\left(T, \alpha_{2}\right)>E_{1}\left(B, \alpha_{2}\right)$

Best Response Functions

Possibility 2: Player 1's unique best response is the pure strategy B if $E_{1}\left(T, \alpha_{2}\right)<E_{1}\left(B, \alpha_{2}\right)$.

Best Response Functions

Possibility 3: All mixed strategies of player 1 yield the same expected payoff, and hence all best responses, if $E_{1}\left(T, \alpha_{2}\right)=E_{1}\left(B, \alpha_{2}\right)$.

A mixed strategy $(p, 1-p)$ for which $0 \leq p \leq 1$ is never a unique best response either it is not a best response or all mixed strategies are best responses.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Battle of the Sexes

Notes

Consider the two-player game with vNM preferences in which the players preferences over deterministic action profiles are the same as in the Battle of the Sexes and their preferences over lotteries are represented by the expected value of the payoff functions shown in the figure below.

What are the mixed strategy Nash equilibria of this game?
Figure: Battle of the Sexes

Example: Battle of the Sexes

We first construct player 1's best response function. To get this, we must calculate the expected utility of Boxing

$$
\begin{aligned}
E_{1}\left(\text { Boxing }, \alpha_{2}\right) & =3 \cdot q+1 \cdot(1-q) \\
& =3 q+1-q=2 q+1
\end{aligned}
$$

and the expected utility of Ballet

$$
E_{1}\left(\text { Ballet }, \alpha_{2}\right)=0 \cdot q+2 \cdot(1-q)
$$

$$
=2-2 q
$$

$E_{1}\left(\right.$ Boxing,$\left.\alpha_{2}\right)>E_{1}\left(\right.$ Ballet, $\left.\alpha_{2}\right)$ if

$$
\begin{array}{r}
2 q+1>2-2 q \\
4 q>1 \\
q>\frac{1}{4}
\end{array}
$$

Example: Battle of the Sexes

- If $q>\frac{1}{4}$ i.e. $E_{1}\left(\right.$ Boxing, $\left.\alpha_{2}\right)>E_{1}\left(\right.$ Ballet, $\left.\alpha_{2}\right)$, then player 1 's unique best response is Boxing i.e. $p=1$.
- If $q<\frac{1}{4}$ i.e. $E_{1}\left(\right.$ Boxing, $\left.\alpha_{2}\right)<E_{1}\left(\right.$ Ballet, $\left.\alpha_{2}\right)$, then player 1 's unique best response is Ballet i.e. $p=0$.
- If $q=\frac{1}{4}$ i.e. $E_{1}\left(\right.$ Boxing, $\left.\alpha_{2}\right)=E_{1}\left(\right.$ Ballet, $\left.\alpha_{2}\right)$, then all of player 1 's mixed strategies yield the same utility and so are all best responses i.e. $0 \leq p \leq 1$.

Thus, player 1's best response function is:

$$
B_{1}(q)= \begin{cases}p=0 & \text { if } q<\frac{1}{4} \\ p: 0 \leq p \leq 1 & \text { if } q=\frac{1}{4} \\ p=1 & \text { if } q>\frac{1}{4}\end{cases}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Battle of the Sexes

We can repeat this for player 2's best response function. The expected utility of Boxing

$$
\begin{aligned}
E_{2}\left(\text { Boxing }, \alpha_{1}\right) & =2 \cdot p+0 \cdot(1-p) \\
& =2 p
\end{aligned}
$$

and the expected utility of Ballet

$$
\begin{aligned}
E_{2}\left(\text { Ballet }, \alpha_{1}\right) & =1 \cdot p+3 \cdot(1-p) \\
& =p+3-3 p=3-2 p
\end{aligned}
$$

$E_{2}\left(\right.$ Boxing,$\left.\alpha_{1}\right)>E_{2}\left(\right.$ Ballet, $\left.\alpha_{1}\right)$ if

$$
\begin{array}{r}
2 p>3-2 p \\
4 p>3 \\
p>\frac{3}{4}
\end{array}
$$

Example: Battle of the Sexes

- If $p>\frac{3}{4}$ i.e. $E_{2}\left(\right.$ Boxing, $\left.\alpha_{1}\right)>E_{2}\left(\right.$ Ballet, $\left.\alpha_{1}\right)$, then player 2 's unique best response is Boxing i.e. $q=1$.
- If $p<\frac{3}{4}$ i.e. E_{2} (Boxing, $\left.\alpha_{1}\right)<E_{2}\left(\right.$ Ballet, $\left.\alpha_{1}\right)$, then player 2 's unique best response is Ballet i.e. $q=0$.
- If $p=\frac{3}{4}$ i.e. $E_{2}\left(\right.$ Boxing, $\left.\alpha_{1}\right)=E_{2}\left(\right.$ Ballet, $\left.\alpha_{1}\right)$, then all of player 2 's mixed strategies yield the same utility and so are all best responses i.e. $0 \leq q \leq 1$.

Thus, player 2's best response function is:

$$
B_{2}(p)= \begin{cases}q=0 & \text { if } p<\frac{3}{4} \\ q: 0 \leq q \leq 1 & \text { if } p=\frac{3}{4} \\ q=1 & \text { if } p>\frac{3}{4}\end{cases}
$$

Example: Battle of the Sexes

There are three mixed strategy Nash equilibria
(1) $((0,1) ;(0,1))$ - degenerate mixed strategy where they each play pure strategies (Ballet; Ballet).
(2) $\left(\left(\frac{3}{4}, \frac{1}{4}\right) ;\left(\frac{1}{4}, \frac{3}{4}\right)\right)$ - a proper mixed strategy.
(3) $((1,0) ;(1,0))$ - degenerate mixed strategy where they each play pure strategies (Boxing; Boxing).

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Matching Pennies

Consider the two-player game with vNM preferences in which the players preferences over deterministic action profiles are the same as in the Matching Pennies game and their preferences over lotteries are represented by the expected value of the payoff functions shown in the figure below.

What are the mixed strategy Nash equilibria of this game?

Figure: Matching Pennies

Example: Matching Pennies

We first construct player 1's best response function. To get this, we must calculate the expected utility of Heads

$$
\begin{aligned}
E_{1}\left(\text { Heads }, \alpha_{2}\right) & =1 \cdot q+(1-q) \cdot(-1) \\
& =2 q-1
\end{aligned}
$$

and the expected utility of Tails

$$
E_{1}\left(\text { Tails }, \alpha_{2}\right)=(-1) \cdot q+1 \cdot(1-q)
$$

$$
=1-2 q
$$

$E_{1}\left(\right.$ Heads,$\left.\alpha_{2}\right)>E_{1}\left(\right.$ Tails,$\left.\alpha_{2}\right)$ if

$$
\begin{array}{r}
2 q-1>1-2 q \\
4 q>2 \\
q>\frac{1}{2}
\end{array}
$$

Example: Matching Pennies

- If $q>\frac{1}{2}$ i.e. $E_{1}\left(\right.$ Heads,$\left.\alpha_{2}\right)>E_{1}\left(\right.$ Tails, $\left.\alpha_{2}\right)$, then player 1 's unique best response is Heads i.e. $p=1$.
- If $q<\frac{1}{2}$ i.e. $E_{1}\left(\right.$ Heads, $\left.\alpha_{2}\right)<E_{1}$ (Tails, α_{2}), then player 1 's unique best response is Tails i.e. $p=0$
- If $q=\frac{1}{2}$ i.e. $E_{1}\left(\right.$ Heads, $\left.\alpha_{2}\right)=E_{1}$ (Tails, α_{2}), then all of player 1 's mixed strategies yield the same utility and so are all best responses i.e. $0 \leq p \leq 1$.

Thus, player 1's best response function is:

$$
B_{1}(q)= \begin{cases}p=0 & \text { if } q<\frac{1}{2} \\ p: 0 \leq p \leq 1 & \text { if } q=\frac{1}{2} \\ p=1 & \text { if } q>\frac{1}{2}\end{cases}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Matching Pennies

We can repeat this for player 2's best response function. The expected utility of Heads

$$
\begin{aligned}
E_{2}\left(\text { Heads }, \alpha_{1}\right) & =(-1) \cdot p+1 \cdot(1-p) \\
& =1-2 p
\end{aligned}
$$

and the expected utility of Tails

$$
\begin{aligned}
E_{2}\left(\text { Tails }, \alpha_{1}\right) & =1 \cdot p+(-1) \cdot(1-p) \\
& =2 p-1
\end{aligned}
$$

$E_{2}\left(\right.$ Heads,$\left.\alpha_{1}\right)>E_{2}\left(\right.$ Tails, $\left.\alpha_{2}\right)$ if

$$
\begin{array}{r}
1-2 p>2 p-1 \\
2>4 p \\
p<\frac{1}{2}
\end{array}
$$

Example: Matching Pennies

- If $p>\frac{1}{2}$ i.e. $E_{2}\left(\right.$ Heads,$\left.\alpha_{2}\right)<E_{2}\left(\right.$ Tails, $\left.\alpha_{2}\right)$, then player 2 's unique best response is Tails i.e. $q=0$.
- If $p<\frac{1}{2}$ i.e. $E_{2}\left(\right.$ Heads, $\left.\alpha_{2}\right)>E_{2}\left(\right.$ Tails, $\left.\alpha_{2}\right)$, then player 2 's unique best response is Heads i.e. $q=1$.
- If $p=\frac{1}{2}$ i.e. $E_{2}\left(\right.$ Heads,$\left.\alpha_{2}\right)=E_{2}\left(\right.$ Tails,$\left.\alpha_{2}\right)$, then all of player 2 's mixed strategies yield the same utility and so are all best responses i.e. $0 \leq q \leq 1$.

Thus, player 2's best response function is:

$$
B_{2}(p)= \begin{cases}q=0 & \text { if } p>\frac{1}{2} \\ q: 0 \leq q \leq 1 & \text { if } p=\frac{1}{2} \\ q=1 & \text { if } p<\frac{1}{2}\end{cases}
$$

Example: Matching Pennies

There is only one mixed strategy Nash equilibria
(1) $\left(\left(\frac{1}{2}, \frac{1}{2}\right) ;\left(\frac{1}{2}, \frac{1}{2}\right)\right)$ - a proper mixed strategy.

We can see that Matching Pennies has no equilibrium if the players are not allowed to randomize.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Hawk-Dove Game

Consider the two-player game with vNM preferences in which the players preferences over deterministic action profiles are the same as in the Hawk-Dove game and their preferences over lotteries are represented by the expected value of the payoff functions shown in the figure below.

What are the mixed strategy Nash equilibria of this game?

Figure: Hawk-Dove Game

Example: Hawk-Dove Game

We first construct player 1's best response function. To get this, we must calculate the expected utility of Aggressive

$$
\begin{aligned}
E_{1}\left(\text { Aggressive }, \alpha_{2}\right) & =0 \cdot q+(1-q) \cdot 6 \\
& =6-6 q
\end{aligned}
$$

and the expected utility of Passive

$$
\begin{aligned}
E_{1}\left(\text { Passive }, \alpha_{2}\right) & =1 \cdot q+3 \cdot(1-q) \\
& =3-2 q
\end{aligned}
$$

$E_{1}\left(\right.$ Aggressive, $\left.\alpha_{2}\right)>E_{1}\left(\right.$ Passive,$\left.\alpha_{2}\right)$ if

$$
\begin{aligned}
6-6 q>3 & -2 q \\
3 & >4 q \\
q & <\frac{3}{4}
\end{aligned}
$$

Example: Hawk-Dove Game

- If $q>\frac{3}{4}$ i.e. $E_{1}\left(\right.$ Aggressive, $\left.\alpha_{2}\right)<E_{1}\left(\right.$ Passive, $\left.\alpha_{2}\right)$, then player 1's unique best response is Passive i.e. $p=0$.
- If $q<\frac{3}{4}$ i.e. $E_{1}\left(\right.$ Aggressive, $\left.\alpha_{2}\right)>E_{1}\left(\right.$ Passive, $\left.\alpha_{2}\right)$, then player 1's unique best response is Aggressive i.e. $p=1$.
- If $q=\frac{3}{4}$ i.e. $E_{1}\left(\right.$ Aggressive, $\left.\alpha_{2}\right)=E_{1}\left(\right.$ Passive, $\left.\alpha_{2}\right)$, then all of player 1 's mixed strategies yield the same utility and so are all best responses i.e. $0 \leq p \leq 1$.

Thus, player 1's best response function is:

$$
B_{1}(q)= \begin{cases}p=0 & \text { if } q>\frac{3}{4} \\ p: 0 \leq p \leq 1 & \text { if } q=\frac{3}{4} \\ p=1 & \text { if } q<\frac{3}{4}\end{cases}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Hawk-Dove Game

We can repeat this for player 2's best response function. The expected utility of Aggressive

$$
\begin{aligned}
E_{2}\left(\text { Aggressive }, \alpha_{1}\right) & =0 \cdot p+6 \cdot(1-p) \\
& =6-6 p
\end{aligned}
$$

and the expected utility of Passive

$$
\begin{aligned}
E_{2}\left(\text { Passive }, \alpha_{1}\right) & =1 \cdot p+3 \cdot(1-p) \\
& =3-2 p
\end{aligned}
$$

$E_{2}\left(\right.$ Aggressive,$\left.\alpha_{1}\right)>E_{2}\left(\right.$ Passive,$\left.\alpha_{2}\right)$ if

$$
\begin{aligned}
6-6 p>3 & -2 p \\
3 & >4 p \\
p & <\frac{3}{4}
\end{aligned}
$$

Example: Hawk-Dove Game

- If $p>\frac{3}{4}$ i.e. $E_{2}\left(\right.$ Aggressive, $\left.\alpha_{2}\right)<E_{2}$ (Passive, α_{2}), then player 2's unique best response is Passive i.e. $q=0$.
- If $p<\frac{3}{4}$ i.e. $E_{2}\left(\right.$ Aggressive, $\left.\alpha_{2}\right)>E_{2}\left(\right.$ Passive, $\left.\alpha_{2}\right)$, then player 2's unique best response is Aggressive i.e. $q=1$.
- If $p=\frac{3}{4}$ i.e. E_{2} (Aggressive, $\left.\alpha_{2}\right)=E_{2}\left(\right.$ Passive, $\left.\alpha_{2}\right)$, then all of player 2's mixed strategies yield the same utility and so are all best responses i.e. $0 \leq q \leq 1$.

Thus, player 2's best response function is:

$$
B_{2}(p)= \begin{cases}q=0 & \text { if } p>\frac{3}{4} \\ q: 0 \leq q \leq 1 & \text { if } p=\frac{3}{4} \\ q=1 & \text { if } p<\frac{3}{4}\end{cases}
$$

Example: Hawk-Dove Game

Figure: Hawk-Dove Game

There are three mixed strategy Nash equilibria
(1) $((0,1) ;(1,0))$ - degenerate mixed strategy where they each play pure strategies (Passive; Aggressive).
(2) $\left(\left(\frac{3}{4}, \frac{1}{4}\right) ;\left(\frac{3}{4}, \frac{1}{4}\right)\right)$ - a proper mixed strategy.
(3) $((1,0) ;(0,1))$ - degenerate mixed strategy where they each play pure strategies (Aggressive; Passive).

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Football Game

Notes

\qquad
\qquad
\qquad
\qquad (pass; run defense) = touchdown, (run; pass defense) = first down, (run; run defense) $=$ stop $\}$.

- Preferences
- OC: (pass; run defense) > (run; pass defense) > (pass; pass defense) $=$ (run; run defense)
- DC: (pass; pass defense) $=$ (run; run defense) $>$ (run; pass defense) $>$ (pass; run defense)

Example: Football Game

Figure: Football Game
DC

		$\begin{gathered} \mathrm{q} \\ \text { Pass Defense } \end{gathered}$	$\begin{gathered} 1-\mathrm{q} \\ \text { Run Defense } \end{gathered}$
p	Pass	0, \underline{S}	T, -T
1-p	Run	E, -F	0, \underline{S}

There are no Nash equilibria in pure strategies and so we need to look for mixed strategy NE.
(1) Find all Nash equilibria
(2) What happens when the value of the touchdown increases?

Example: Football Game

We first construct the OC's best response function. To get this, we must calculate the expected utility of Pass

$$
\begin{aligned}
E_{O C}\left(\text { Pass }, \alpha_{2}\right) & =0 \cdot q+(1-q) \cdot T \\
& =T-T q
\end{aligned}
$$

and the expected utility of Run

$$
\begin{aligned}
E_{O C}\left(\text { Passive, } \alpha_{2}\right) & =F \cdot q+0 \cdot(1-q) \\
& =q F
\end{aligned}
$$

$E_{O C}\left(\right.$ Pass, $\left.\alpha_{2}\right)>E_{O C}\left(\right.$ Run,$\left.\alpha_{2}\right)$ if

$$
\begin{array}{r}
T-T q>q F \\
T>q F+q T \\
T>q(F+T) \\
\quad \frac{T}{T+F}>q
\end{array}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Football Game

- If $q>\frac{T}{T+F}$ i.e. $E_{O C}\left(\right.$ Pass, $\left.\alpha_{D C}\right)<E_{O C}\left(\right.$ Run, $\left.\alpha_{D C}\right)$, then player 1's unique best response is Run i.e. $p=0$.
- If $q<\frac{T}{T+F}$ i.e. $E_{O C}\left(\right.$ Pass, $\left.\alpha_{D C}\right)>E_{O C}\left(\right.$ Run, $\left.\alpha_{D C}\right)$, then player 1's unique best response is Pass i.e. $p=1$.
- If $q=\frac{T}{T+F}$ i.e. $E_{O C}\left(\right.$ Pass, $\left.\alpha_{D C}\right)=E_{O C}\left(\right.$ Run, $\left.\alpha_{D C}\right)$, then all of player 1 's mixed strategies yield the same utility and so are all best responses i.e. $0 \leq p \leq 1$.

Thus, the OC's best response function is:

$$
B_{O C}(q)= \begin{cases}p=0 & \text { if } q>\frac{T}{T+F} \\ p: 0 \leq p \leq 1 & \text { if } q=\frac{T}{T+F} \\ p=1 & \text { if } q<\frac{T}{T+F}\end{cases}
$$

Example: Football Game

We can repeat this for the DC's best response function. The expected utility of Pass Defense

$$
\begin{aligned}
E_{D C}\left(\text { Pass Defense, } \alpha_{1}\right) & =S \cdot p+(-F) \cdot(1-p) \\
& =p S+p F-F
\end{aligned}
$$

and the expected utility of Run Defense
$E_{D C}\left(\right.$ Run Defense, $\left.\alpha_{1}\right)=(-T) \cdot p+S \cdot(1-p)$

$$
=S-p T-p S
$$

$E_{D C}\left(\right.$ Pass Defense, $\left.\alpha_{1}\right)>E_{2}\left(\right.$ Run Defense, $\left.\alpha_{2}\right)$ if

$$
\begin{array}{r}
p S+p F-F>S-p T-p S \\
p(S+F)+p(T+S)>S+F \\
p(2 S+F+T)>S+F \\
p>\frac{S+F}{2 S+F+T}
\end{array}
$$

Example: Football Game

- If $p>\frac{S+F}{2 S+F+T}$ i.e. $E_{D C}\left(\right.$ Aggressive, $\left.\alpha_{O C}\right)<E_{2}\left(\right.$ Passive, $\left.\alpha_{O C}\right)$, then player 2's unique best response is Pass Defense i.e. $q=1$.
- If $p<\frac{S+F}{2 S+F+T}$ i.e. $E_{D C}\left(\right.$ Aggressive, $\left.\alpha_{O C}\right)>E_{2}\left(\right.$ Passive, $\left.\alpha_{O C}\right)$, then player 2's unique best response is Run Defense i.e. $q=0$.
- If $p=\frac{S+F}{2 S+F+T}$ i.e. $E_{D C}\left(\right.$ Aggressive, $\left.\alpha_{O C}\right)=E_{2}\left(\right.$ Passive, $\left.\alpha_{O C}\right)$, then all of player 2's mixed strategies yield the same utility and so are all best responses i.e. $0 \leq q \leq 1$.

Thus, the DC's best response function is:

$$
B_{D C}(p)= \begin{cases}q=0 & \text { if } p<\frac{S+F}{2 S+F+T} \\ q: 0 \leq q \leq 1 & \text { if } p=\frac{S+F}{2 S+F+T} \\ q=1 & \text { if } p>\frac{S+F}{2 S+F+T}\end{cases}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: Football Game

Figure: Football Game

There is one mixed strategy Nash equilibrium

- $\left(\left(\frac{S+F}{2 S+F+T}, 1-\frac{S+F}{2 S+F+T}\right) ;\left(\frac{T}{T+F}, 1-\frac{T}{T+F}\right)\right)$

Example: Football Game

The model/equilibrium analysis is your theory.
You get testable implications from the comparative statics.

Comparative statics indicate how the equilibrium changes as you change one of the model's parameters

So, let's look at what happens when the value of a touchdown (T) increases.
What happens if $T \rightarrow T^{\prime}: T^{\prime}>T$?

Example: Football Game

Notes

\qquad
\qquad
\qquad
\qquad

As the value of T increases, the probability of passing (p) decreases but the probability of pass defense (q) increases!

Empirically, as the end of the game approaches, the value of a touchdown increases. What we see is a lot of running plays by the offense and the defense pulls back because it doesn't want to allow touchdowns.

An Alternative to Best Response Functions

So far we have found the set of mixed strategy NE by constructing the players' best response functions. But there is another way.

You will have noticed in all the previous games that the proper mixed strategy NE occurs when the expected payoffs to each of a player's pure strategies are equal.

Thus, one way to find the proper mixed strategy NE is to set the expected payoffs of the player's strategies equal to each other and solve for the respective probabilities.

An Alternative to Best Response Functions

Definition: A mixed strategy profile a^{*} in a strategic game with vNM preferences in which each player has finitely many actions is a mixed strategy Nash equilibrium if and only if, for each player i

- the expected payoff, given a_{-i}^{*}, to every action to which a_{i}^{*} assigns positive probability is the same
- the expected payoff, given a_{-i}^{*}, to every action to which a_{i}^{*} assigns zero probability is at most the expected payoff to any action to which a_{i}^{*} assigns positive probability.

Each player's expected payoff in an equilibrium is her expected payoff to any of her actions that she uses with positive probability.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

An Alternative to Best Response Functions

When constructing the best response functions for each player, we found the following

- If $q=\frac{1}{4}$ i.e. $E_{1}\left(\right.$ Boxing,$\left.\alpha_{2}\right)=E_{1}\left(\right.$ Ballet, $\left.\alpha_{2}\right)$, then all of player 1 's mixed strategies yield the same utility and so are all best responses i.e. $0 \leq p \leq 1$.
- If $p=\frac{3}{4}$ i.e. E_{2} (Boxing, $\left.\alpha_{1}\right)=E_{2}\left(\right.$ Ballet, $\left.\alpha_{1}\right)$, then all of player 2 's mixed strategies yield the same utility and so are all best responses i.e. $0 \leq q \leq 1$.

Best Response Functions and Indifference

The key then to finding the proper mixed strategy NE is simply to set the expected payoffs to each of a player's pure strategies equal to each other and solve for either p or q.

In effect, each player must choose either p or q to make the other player indifferent between her two actions.

Figure: Battle of the Sexes

Battle of the Sexes Again

The expected utility of Boxing for Player 1 is

$$
\begin{aligned}
E_{1}\left(\text { Boxing }, \alpha_{2}\right) & =3 \cdot q+1 \cdot(1-q) \\
& =3 q+1-q=2 q+1
\end{aligned}
$$

and the expected utility of Ballet

$$
\begin{aligned}
E_{1}\left(\text { Ballet }, \alpha_{2}\right) & =0 \cdot q+2 \cdot(1-q) \\
& =2-2 q
\end{aligned}
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Battle of the Sexes Again

Player 2 needs to choose a q such that Player 1 is indifferent between Boxing and Ballet.
$E_{1}\left(\right.$ Boxing,$\left.\alpha_{2}\right)=E_{1}\left(\right.$ Ballet, $\left.\alpha_{2}\right)$ if

$$
\begin{array}{r}
2 q+1=2-2 q \\
4 q=1 \\
q=\frac{1}{4}
\end{array}
$$

So, in the proper mixed strategy NE, player 2 uses the mixed strategy $(q, 1-q)=\left(\frac{1}{4}, \frac{3}{4}\right)$.

Battle of the Sexes Again

The expected utility of Boxing for Player 2 is

$$
E_{2}\left(\text { Boxing }, \alpha_{1}\right)=2 \cdot p+0 \cdot(1-p)
$$

and the expected utility of Ballet

$$
E_{2}\left(\text { Ballet }, \alpha_{1}\right)=1 \cdot p+3 \cdot(1-p)
$$

$$
=p+3-3 p=3-2 p
$$

Battle of the Sexes Again

Player 1 needs to choose a p such that Player 2 is indifferent between Boxing and Ballet.
$E_{2}\left(\right.$ Boxing,$\left.\alpha_{1}\right)=E_{2}\left(\right.$ Ballet, $\left.\alpha_{1}\right)$ if

$$
\begin{array}{r}
2 p=3-2 p \\
4 p=3 \\
p=\frac{3}{4}
\end{array}
$$

So, in the proper mixed strategy NE, player 1 uses the mixed strategy $(p, 1-p)=\left(\frac{3}{4}, \frac{1}{4}\right)$.

Battle of the Sexes Again

Player 1 needs to choose a p such that Player 2 is indifferent between Boxing and Ballet.
$E_{2}\left(\right.$ Boxing,$\left.\alpha_{1}\right)=E_{2}\left(\right.$ Ballet, $\left.\alpha_{1}\right)$ if

$$
\begin{array}{r}
2 p=3-2 p \\
4 p=3 \\
p=\frac{3}{4}
\end{array}
$$

So, in the proper mixed strategy NE, player 1 uses the mixed strategy $(p, 1-p)=\left(\frac{3}{4}, \frac{1}{4}\right)$.

And so the proper mixed strategy NE of the Battle of the Sexes game is $\left(\left(\frac{3}{4}, \frac{1}{4}\right) ;\left(\frac{1}{4}, \frac{3}{4}\right)\right)$.

Matching Pennies Again

Figure: Matching Pennies

The expected utility of Heads for Player 1 is

$$
\begin{aligned}
E_{1}\left(\text { Heads }, \alpha_{2}\right) & =1 \cdot q+(1-q) \cdot(-1) \\
& =2 q-1
\end{aligned}
$$

and the expected utility of Tails is

$$
\begin{aligned}
E_{1}\left(\text { Tails, } \alpha_{2}\right) & =(-1) \cdot q+1 \cdot(1-q) \\
& =1-2 q
\end{aligned}
$$

Matching Pennies Again

Player 2 needs to choose a q such that Player 1 is indifferent between Heads and Tails.
$E_{1}\left(\right.$ Heads,$\left.\alpha_{2}\right)=E_{1}\left(\right.$ Tails,$\left.\alpha_{2}\right)$ if

$$
\begin{array}{r}
2 q-1=1-2 q \\
4 q=2 \\
q=\frac{1}{2}
\end{array}
$$

So, in the proper mixed strategy NE, player 2 uses the mixed strategy $(q, 1-q)=\left(\frac{1}{2}, \frac{1}{2}\right)$.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Matching Pennies Again

Figure: Matching Pennies

The expected utility of Heads for Player 2 is

$$
\begin{aligned}
E_{2}\left(\text { Heads }, \alpha_{1}\right) & =(-1) \cdot p+1 \cdot(1-p) \\
& =1-2 p
\end{aligned}
$$

and the expected utility of Tails is

$$
\begin{aligned}
E_{2}\left(\text { Tails }, \alpha_{1}\right) & =1 \cdot p+(-1) \cdot(1-p) \\
& =2 p-1
\end{aligned}
$$

Matching Pennies Again

Player 1 needs to choose a p such that Player 2 is indifferent between Heads and Tails.
$E_{2}\left(\right.$ Heads,$\left.\alpha_{1}\right)=E_{2}\left(\right.$ Tails,$\left.\alpha_{2}\right)$ if

$$
\begin{array}{r}
1-2 p=2 p-1 \\
2=4 p \\
p=\frac{1}{2}
\end{array}
$$

So, in the proper mixed strategy NE, player 1 uses the mixed strategy $(p, 1-p)=\left(\frac{1}{2}, \frac{1}{2}\right)$.

Matching Pennies Again

Player 1 needs to choose a p such that Player 2 is indifferent between Heads and Tails.
$E_{2}\left(\right.$ Heads,$\left.\alpha_{1}\right)=E_{2}\left(\right.$ Tails,$\left.\alpha_{2}\right)$ if

$$
\begin{array}{r}
1-2 p=2 p-1 \\
2=4 p \\
p=\frac{1}{2}
\end{array}
$$

So, in the proper mixed strategy NE, player 1 uses the mixed strategy $(p, 1-p)=\left(\frac{1}{2}, \frac{1}{2}\right)$.

And so the proper mixed strategy NE of the Matching Pennies game is $\left(\left(\frac{1}{2}, \frac{1}{2}\right) ;\left(\frac{1}{2}, \frac{1}{2}\right)\right)$.

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Hawk-Dove Game Again

Figure: Hawk-Dove Game

The expected utility of Aggressive for Player 1 is

$$
E_{1}\left(\text { Aggressive, } \alpha_{2}\right)=0 \cdot q+(1-q) \cdot 6
$$

$$
=6-6 q
$$

and the expected utility of Passive is

$$
E_{1}\left(\text { Passive }, \alpha_{2}\right)=1 \cdot q+3 \cdot(1-q)
$$

$$
=3-2 q
$$

Hawk-Dove Game Again

Player 2 needs to choose a q such that Player 1 is indifferent between Aggressive and Passive.
$E_{1}\left(\right.$ Aggressive, $\left.\alpha_{2}\right)=E_{1}\left(\right.$ Passive, $\left.\alpha_{2}\right)$ if

$$
\begin{aligned}
6-6 q=3 & -2 q \\
3 & =4 q \\
q & =\frac{3}{4}
\end{aligned}
$$

So, in the proper mixed strategy NE, player 2 uses the mixed strategy $(q, 1-q)=\left(\frac{3}{4}, \frac{1}{4}\right)$.

Hawk-Dove Game Again

Figure: Hawk-Dove Game

The expected utility of Aggressive for Player 2 is

$$
\begin{aligned}
E_{2}\left(\text { Aggressive }, \alpha_{1}\right) & =0 \cdot p+6 \cdot(1-p) \\
& =6-6 p
\end{aligned}
$$

and the expected utility of Passive is

$$
E_{2}\left(\text { Passive }, \alpha_{1}\right)=1 \cdot p+3 \cdot(1-p)
$$

$$
=3-2 p
$$

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Notes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Soccer Penalty Game

Notes

Figure: Soccer Penalty Game

There are no NE in pure strategies. But what about a proper mixed strategy NE?

Soccer Penalty Game

Notes

Figure: Soccer Penalty Game

\[

\]

We know that $p_{L}+p_{C}+p_{R}=1$ and $q_{L}+q_{C}+q_{R}=1$.

Soccer Penalty Game

Notes

\qquad

Figure: Soccer Penalty Game

- $E_{S}[L, q]=q_{C}+q_{R}$
- $E_{S}[C, q]=q_{L}+q_{R}$
- $E_{S}[R, q]=q_{L}+q_{C}$

Using $E_{S}[L, q]=E_{S}[C, q]=E_{S}[R, q]$ and $q_{L}+q_{C}+q_{R}=1$, it is easy to see that $q_{L}=q_{C}=q_{R}=\frac{1}{3}$.

Soccer Penalty Game

Notes

Figure: Soccer Penalty Game

Similarly for the goalkeeper, it is easy to see that

- $E_{G}[L, p]=p_{L}$
- $E_{G}[C, p]=p_{C}$
- $E_{G}[R, p]=p_{R}$

Using $E_{G}[L, p]=E_{G}[C, p]=E_{G}[R, p]$ and $p_{L}+p_{C}+p_{R}=1$, it is easy to see that $p_{L}=p_{C}=p_{R}=\frac{1}{3}$.

Soccer Penalty Game

Notes

Thus, the unique NE of the Soccer Penalty Game is $\left(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) ;\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\right)$.
\qquad
Given these probabilities, the shooter will make a goal on average in 2 out 3 penalties for any of her three actions (i.e., $E_{S}[L, q]=q_{C}+q_{R}=\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$ and similarly $E_{S}[C, q]=\frac{2}{3}$ and $E_{S}[R, q]=\frac{2}{3}$. Hence, in equilibrium the shooter will make a goal in 2 out of 3 penalties (i.e., the proportion is $\frac{2}{3}$).

Notes

[^0]: The players' choices are assumed to be independent

